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ASYMPTOTIC ANALYSIS OF THE STABILITY OF A CYLINDRICAL VISCOELASTIC SHELL UNDER 
THE ACTION OF A LONGITUDINAL PERIODIC LOAD* 

L.KH. BELEN'KAYA 

Stability of the rectilinear form of a viscoelastic, orthotropic cylindrical shell acted 

upon by a longitudinal periodic load is considered in the case of high-frequency modulation 

and hear the resonance frequencies. The boundary conditions at the ends of the shell allow 

a periodic continuation over the spatial variables, so that the problem can be reduced to a 

system of ordinary integrodifferential equations with periodic coefficients. 

The problem of the stability of a cylindrical shell acted upon by a longitudinal periodic 

load was studied in /l/, where the Bolotin method was used for the exponential relaxation 

kernel to derive an approximate formula for the critical modulation frequency neartheprincipal 

resonance at low modulation amplitudes and low viscosities. The study of the stability of the 

rectilinear form of the cylindrical shell in question was carried out numerically, using the 

method of continued fractions over a wide a range of parameters of the system**.(**Belen'kaya 

L.K~. Numerical study of the stability of an orthotropic, viscoelastic cylindrical shell acted 

upon by a longitudinal periodic load. Rostov-on-Don, 1985. Dep. in VINITI, 7898-84, 11.12.84.) 

Below we obtain an asymptotic formula for the boundary of stability in the case when 
o--m and the wave numbers are fixed. In the case of fractional exponential relaxation 

kernels the critical load and neutral oscillations are sought in the form of seriesinfractional 

powers of the parameter E(E= l/o). For the differential equationsinthe case when the relaxation 

kernel has no singularities at the zero, and for the integrodifferential equations, the 
asymptotic expansions are constructed in integral powers of E. It is shown that at high 
modulation frequencies the critical value of the load is close to its stationary value. 

Further, the Lyapunov-Schmidt method is used to study the behaviour of the system in the 

case when the frequency o is close to the resonance frequency ok (ol( = PoJk, k = 1, 2, 3, .; o. 
is the natural frequency of oscillation) and the coefficients of viscosity are small. It is 

shown thatif the mean value of the load <cp> 70, then at the higher-order resonances (k = 2. 3, 
. ..) it strongly shifts the frequency of natural oscillations and a stable state exists near 

the k-th resonance (k = 2,3,...) when the viscosity is low, i.e. the instability near the 
higher-order resonances (k = 2,3,...) is quenched by the viscosity. 

If on the other hand (VP) = 0, then a state of instability exists near the k-thresonance 
(k = 2, 3, .) . 

1. Formulation of the problem. A longitudinal periodic load 'p (ox) = b (1 + I( COS 0%) 

where b is the mean axial load pressure, ~1, o are the modulation amplitude and frequency and 

6 6 denote the dimensionless length and thickness of the shell, acts on an orthotropic, 

viscoelastic cylindrical shell. The equations of motion of the shell given in /l/ are used. 

The ends of the shell can move freely in the axial direction, but not in the radial direction, 

so that the initial system reduces to a system of ordinary integrodifferential equations with 

periodic coefficients 

W" - pJ"* (2n)-'(i + p COS OT) W - hef + 'i, (IZY - hX) - 

'/cQ,,* (v,Y) (-0 + 'iehQ,,* (VaX) CT) = 0 (i.1) 
QllWf a,,X + a,,Y + a14 (V,W) w + %' (V,X) 6) + k" (V*XW + 
aI8 (VIY) (7) = 0 

Q,lW + u*aX + n,,Y + 0% (V,W) (7) + %6 (VA 0) + w (~',Y) w + 
a%" (Y,Y) (t) = 0 

%lf + %,W + a,, (VIW) @I + %4 (VA CT) = 0 

(V~)(T)E 5' Ki(r - FJ)u(e)dO; h,nl 
d' 

i=i,2,3 

To 

Here K‘(8) are the relaxation kernels, W,X,Y,f are the amplitudes of the displacement, 
of rotation vector and stress function, n and I are the azimuthal and axial quantum numbers, 
and n = 0, 1, 2, . ..; 2 = 1, 2,. . . . The dimensionless coefficients ai,, Q,,', Qss' depend on the 

material constants and quantum numbers n and 1 (see the footnote on the previous page). 

In order to study the stability of the rectilinear form, we shall seek non-zero solutions 
of system (1.1) at rO= -co, of the form 
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(It’, .v, Y. /i --- (.“T (u;, s,, I’,, fI) il.“! 

where H',, X1, Y,, fl are time periodic functions (p = Znio);o is a complex parameter. Following 
the theory of ordinary differential equations, we shall call the solutions (1.2) the E'loquet 
solutions. We shall also call the set of values of CI for which system (1.1) has F'loquet 
solutions, the spectrum of stability of problem (1.1). By analogy with the first Lyapunov 
method for ordinary differential equations we shall assume that the shell is asymptotically 
stable, provided that the spectrum of stability of system (1.1) lies in the left half-plane 
(Reo < (J). and unstable if at least one value liO is such that Rrcz,, > 11. 

We shall consider the loss of stability of the rectilinear form of the shell related to 
the appearance of periodic oscillations with period p or 2p. We shall denote by p$ the 
critical values of the load fl correspondinq to the p-periodic perturbations of the system 
(1.1) (zO = - ~1. and by &* corresponding to 2p-periodic perturbations (n and 1 arc fixed, 

k = 1, 2, IV). 

2. Limits of stability for large O. We will obtain an asymptotic formula for the 
boundary of stability in the case when the modulation frequency (11-x. We put DT== t in the 
system (1.1) and introduce a small parameter E- i/o. We impose on W the normalizing condition 
(W> = 1 and write W- 1 i IL',(~> 0. Let us consider a specific case, when the kernels Ki are 
fractionally exponential 

K, (t) = A@-$"-', ‘4, a; (1 (2.1) 
O<a<l, p>o 

We reduce system (1.1) to the form 

(2.2) 

We shall seek the solutions of the system (2.2) and the critical laad, in the form of a 
series in powers of E,&. It can be shown that if the kernels Ki have no singularities at 
zero, then the expansions can be carried out in integral powers of E: 

(2.3) 

(We know (e.g. /2/) that in the case of differential equations 
carried out in integral powers of e). We shall not expand the 
substituting (2.3)into system (2.2) and equating terms of like 
sequence of systems from which we can determine, one after the 

an anaiogous expansion is 
kernel K(B) in a series e, 6. 
powers in ~,6, we obtain a 

other, WkIv xkl, Ykf. /kl. hf. The 
necessary and sufficient condition for the existence of a Zn-periodic solution of the result- 
ing systems is, that the following condition holds: 

<&’ : 0 (2.4) 

where f&I is the right-hand side of the differential equation of the systems. 
*Using this condition, we obtain the asymptotic formula for the critical load B1' (the 

quantum numbers n and d. are fixed) as o-00 

Here Boo is the critical load forthe stationary problem (II=@, and the coefficients 
841. B.0 depend on the parameters of the system (the expressions themselves are not given 
because of their length). 

We see from (2.5) that at high modulation frequencies o the value of the critical load 

B is close to the value of the critical load for the stationary case (w=(J). 

Calculations were carried out for the following values of the moduli of elasticity: Ail= 
2.089~1010 N/m2, 
N/m2, 

A,,= 0.276~101~ N/m2, A,,= 22.75~101~ N/m2, and A,,=A,,=dee= 0.795x101° 
and A,," = Ah,* = A.s* = O.i.dea. The parameters of the relaxation kernels are ai=O.25, vi-= 

0.05. (The kernels Kj(t) are given by the relation (2.1)). 
At high values of the modulation frequency o the critical load obtained numerically 

with help of continued fractions, reaches the asymptotic value calculated accordingtoformula 
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(2.5). The asymptotic formula gives good agreement with the value of the critical load 

determined numerically already for o= 3, A, = Va, A, = A, = 0, d = 2 when (n, 1) = (9, 10) (we note 

that when o= 3, then there exist several points (9,Z) at which the critical load attains 

its minimum value). For p E (0; 71 the critical load is identical with the asymptotic value 

(2.5) with an error not exceeding 3.4%. 

For o = 10, A,= ‘I,, AZ= A,= 0, (n,Z)= (9,10) the critical load obtained is numerically equal 

to the asymptotic value, with an error not exceeding 0.03% for 9 E (0; 11. Two terms of the 
formula (2.5) produce an error not exceeding (1.3?/0. 

At high modulation frequencies an increase in the amplitude p exerts a stabilizing 

influence (the critical load increases as p increases). 

We note that the coefficient bsO of the asymptotic expansion (2.5) can be found from the 
numerical results (see the earlier footnote) 

BzO = li$+, 0% (Be' - Boo) (2.6) 

Here &I is the critical load obtained numerically for fixed n, 1, pL. Ai, 0; Boo is the critica 
load for 9= 0. We will consider the case AI=Vt, A,=A,=O, p = I/*. (n, 2) = (9, 10) ; with these 
parameters the stationary load ~00=0.~6S8. The coefficient Baa obtained from Eq.(2.6) is 
identical with the asymptotic value ha~'f&0'i(4n) for o = 10 with an error of 3.1%, and for 
0 = 20 with an error of 0.78%. If the modulation amplitude is p= 0.2, then the coefficient 
pa0 calculated from formula (2.6) will be identical with the asymptotic value (2.5) at -o= 7 

with the error of 1.5%. 

3. The behaviour of the system near the resonance frequencies. Letus investi- 

gate the behaviour of system (1.1) in the case when the shall material has low ductility and 

the modulation frequency o is close to one of the resonance frequencies o,; = 2o,lk (k = I, 2, 

. . . . o* is one of the natural frequencies of the shell defined by the quantum numbers (n. 0). 
Let us construct the neutral curves near every resonance frequency. To do this, it is 

convenient to introduce into system (1.1) a formally small parameter E and replace the 
kernels S;(T) by EK,. We can assume that the parameter e is responsible for the inherent 
properties of the shell. We further introduce into our discussion the detuning of the k-th 

resonance, assuming that 
a= ot2 - 02k=i4 (3.1) 

Perhaps it would be more natural to fix 0. and vary o. but the substitution adopted 
here, to which we can pass by an appropriate change of time, is more convenient. 

Let us rewrite system (1.1) when To = - 00, taking into account the remarks made above 

and using (3.1). We shall study the stability of this system for small E, a, B. 

When e=O,~=O, the system is stable. If o does not coincide with any of the resonance 

frequencies ok+ then the system remains stable also for small e,p and the critical load 
tends, as e-0, to a non-zero limit PO. In this case the region of stability in the (3, e) 
plane contains an open semicircle: B2+ G< Boa, e>O. If on the other hand the frequency o 

tends to one of the resonance frequencies (c(- 0) and E-O, then the critical load will tend 

to zero. In this case the points of the upper semicircle around the zero in the B. e plane 

lying in some curvilinear sector, will appear in the region of instability. 

We shall use the Lyapunov-Schmidt method is determine the neutral curves near the 

resonances, and construct the corresponding branching equation. When e=b=a=O, the system 

has the solution 

W, = A,ikor/2 + A'e-'"arlz, f. = _ (I~~w,,/~~~ 

x0= xow,, Y,= u,w, 

(A, A' are unknown constants). 

We shall seek a periodic solution with frequency on/2(m= 1,2) of the system in question, 

for small e, c(, t3 in the form 

w=w,+iV, x=x,+x, Y=Y,+Y,f=fo+j (3.2) 
Here we have 

(i$?,fikC0VZ >=o (3.3) 

(W,X,Y,f)(r+4Nm) = (m,X, Y,f)(r) 

We shall seek the unknown functions iV, X,Y,f in the form of series in powers of a, 8, B 

(WV x. Y, 1)= B(Qm, +rrn> Yklrn' fkrm) (3.4) 

akel~"', k4 + m’ f 1’ > 0 

Substituting (3.2) and (3.3) into the system in question, taking into account (3.4), and 

writing the conditions of solvability of the resulting system, we obtain the branching equation 

which defines, for fixed and sufficiently small e, in the a, B plane, a neutral curve 

separating the regions of stability and instability. 

The neutral curve is given, with the accuracy up to second-order infinitesimals, by the 

equation 
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(D(z) is the periodic load with period p = Znlo, acting upon the shell, and E, is a coefficient 

depending on the inherent properties of the shell. 

We have the following possibilities: 

lo. If PO2 < I Pk I2 b%llz < 013 then the branching equation always has a solution (3.5) and we 

have instability near the k-th resonance (kc- 1, a,...) for small a, E, B. 
2'. If po2> (ph- ~2(goo1>O), then, provided that A<O, the branching equation has no sol- 

utions and we have stability near the k-th resonance (k= 1,2,...) for small a, 6, B- When 

A>,O, the equation of the neutral curve will have the form (3.5). 

3O. If Po2 ; 1 Pk I* h, = O), and the coefficient accompanying the third power of the parameter 

fi is not zero, then the equation of the neutral curve is obtained from a cubic equation. 

Let us consider, as an example, the function @ 7: 1 7 p cos 07, in which case PO = 1, i-1’ 

P_l = p/2, Pk = 0, k= 2, a,.... Near the principal resonance (k= i) when )111<2 and A<0 (case 

2O) we have stability for small 6 & B, if on the other hand {pi<2 and A > 0 , then the 

equation of the neutral curve has the form (3.5). 

In the case of higher-order resonances (k= 2,3,...) we always have A<(). and hence in- 

stability. In the case of an elastic shell we have in the same situation (PO = 1, Pk = (1, Ii = 2, 

3, . ..). the condition A = 0 holds and the neutral curve is given by the equation 

B,,% zz 2n&"=. k = 2. 3, ._. 

The author thanks V.I. Yudovich for his interest and for useful discussions. 
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A METHOD OF ANALYSING PLATES AND SHALLOW SHELLS* 

A.I. POLUBARINOVA 

A method of representing a function of two variables defined in a square u- [O,nl xlO,nl, 
in the form of a combination of polynomials and differentiable trigonometric series is given. 

Unlike the representations obtained earlier /l-3/, the present paper proposes the use of ex- 

pansions in trigonometric series over the system of functions (sin mz), (1, cos ms), m = 1, 2, 
complete in IO. nl, and in double series over the system of functions (sin mz sin ny], {sin ny, cos mz 

sin ny), (sin mz, sin mz cos ny}. m, n= 1.2, ._. complete in 0. Expansion in such,systems of functions 
has certain advantages compared with expansions in the usual trigonometric system of sines and 

cosines in I--n,nl and the corresponding system of functions in the square I-n,nlxl-n,nl. 

The proposed method is used to solve problems of the theory of shells with constant coefficients 

in the case of rigid clamping along a rectangular contour. The solution is obtained in the 
form of trigonometric series whose coefficients are expressed in terms of the solution of an 
infinite linear algebraic system of equations. Numerical values of the deflection are obtained 

for the case of a shallow circular cylindrical shell. 
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